Geometric Biplane Graphs II: Graph Augmentation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Biplane Graphs II: Graph Augmentation

We study biplane graphs drawn on a finite point set S in the plane in general position. This is the family of geometric graphs whose vertex set is S and which can be decomposed into two plane graphs. We show that every sufficiently large point set admits a 5-connected biplane graph and that there are arbitrarily large point sets that do not admit any 6connected biplane graph. Furthermore, we sh...

متن کامل

Geometric Biplane Graphs I: Maximal Graphs

We study biplane graphs drawn on a finite point set S in the plane in general position. This is the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs. We show that two maximal biplane graphs—in the sense that no edge can be added while staying biplane—may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane...

متن کامل

Plane geometric graph augmentation: a generic perspective∗

Graph augmentation problems are motivated by network design, and have been studied extensively in optimization. We consider augmentation problems over plane geometric graphs, that is, graphs given with a crossing-free straight-line embedding in the plane. The geometric constraints on the possible new edges render some of the simplest augmentation problems intractable, and in many cases only ext...

متن کامل

Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs

Algorithms for the construction of spanning planar subgraphs of Unit Disk Graphs (UDGs) do not ensure connectivity of the resulting graph under single edge deletion. To overcome this deficiency, in this paper we address the problem of augmenting the edge set of planar geometric graphs with straight line edges of bounded length so that the resulting graph is planar and 2-edge connected. We give ...

متن کامل

Supermodularity in Unweighted Graph Optimization II: Matroidal Term Rank Augmentation

Ryser's max term rank formula with graph theoretic terminology is equivalent to a characterization of degree sequences of simple bipartite graphs with matching number at least `. In a previous paper [1] by the authors, a generalization was developed for the case when the degrees are constrained by upper and lower bounds. Here two other extensions of Ryser's theorem are discussed. The rst one is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2015

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-015-1547-0